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Abstract
Recently the ‘toolkit’ discretization introduced to accelerate the numerical
resolution of the time-dependent Schrödinger equation arising in quantum
optimal control problems demonstrated good results on a large range of models.
However, when coupling this class of methods with the so-called monotonically
convergent algorithms, numerical instabilities affect the convergence of the
discretized scheme. We present an adaptation of the ‘toolkit’ method which
preserves the monotonicity of the procedure. The theoretical properties of the
new algorithm are illustrated by numerical simulations.

PACS numbers: 32.80, QK

1. Introduction

We introduce in this communication a technique that addresses the numerical resolution of the
time-dependent Schrödinger equation (TDSE) in a quantum control framework. The method
uses the ‘toolkit’ method introduced by Rabitz et al [1–3] as a numerical solver of TDSE, and
the monotonically convergent algorithms [4, 5] as an optimization method to compute optimal
electrical fields. However, the monotonicity may be lost after time discretization. The goal of
this work is to explain how to conserve it using a toolkit procedure used for time discretization.

Let us briefly present the model and the corresponding optimal control framework used
here. Consider a quantum system described by its wavefunction �(t, x). Here x denotes the
space variable belonging to R

γ (for some γ � 1). The dynamics of this system is characterized
by its internal Hamiltonian,

H0 = K + V (x). (1)

In this equation K, the kinetic part, could be −� (the Laplacian) while V (x) is the potential
operator. By assumption this Hamiltonian does not give rise to an appropriate evolution and
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an external interaction is introduced to obtain a desired final state. This interaction is taken
here as an electric field with time-dependent amplitude ε(t) that acts on the system through a
time-independent dipole moment operator µ. We obtain the new Hamiltonian H = H0−µε(t)

and the corresponding Schrödinger equation (we work in atomic units, i.e. h̄ = 1) which reads

(TDSE)

{
i∂t�(t, x) = H�(t, x)

�(t = 0, x) = �init(x),
(2)

where �init is the initial condition for � subject to the constraint

‖�init‖L2(Rγ ) = 1.

As H0 and µ are supposed self-adjoint, the L2 norm of the state is constant with respect to the
time. In numerical simulations, the ground state, i.e. an unitary eigenvector of H0 associated
to the lowest eigenvalue, is generally taken as initial state ψinit.

The optimal control assesses the fitness of the control ε(t) and of the final state �(T )

through the introduction of a functional J to be maximized; this functional includes on the one
hand terms that describe the objectives and on the other hand terms that penalize undesired
effects. One simple example of a functional is

J (ε) = 〈�(T )|O|�(T )〉 − α

∫ T

O

ε2(t) dt. (3)

Here and in what follows, we use the convention that for any function f and g and any
operator A: 〈f |A|g〉 = ∫

R
γ f (x)Ag(x) dx. The coefficient α is a positive parameter (it may

also depend on time, cf [6]) and O is the observable operator that encodes the goal; the larger
the value 〈�(T )|O|�(T )〉 is, the better the control objectives have been met.

The maximization of the functional J is realized by solving the Euler–Lagrange critical
point equations; a standard way to write these equations is to introduce an adjoint state χ(t, x)

acting as a Lagrange multiplier. Denoting by Im(z), the imaginary part of the complex number
z, the following critical point equations are obtained [7]:{

i∂t�(t, x) = (H0 − µε(t))�(t, x),

�(t = 0, x) = �init(x),
(4)

{
i∂tχ(t, x) = (H0 − µε(t))χ(t, x),

χ(t = T , x) = O�(T , x),
(5)

αε(t) = −Im〈χ |µ|�〉(t). (6)

Efficient strategies to solve in practice the system (4)–(6) are given by the monotonically
convergent algorithms [7, 8] that are guaranteed to improve the functional J values at each
iteration. A general formulation of these monotonic algorithms is given by the following
system [4], which have to be solved iteratively at each step,{

i∂t�
k(t, x) = (H0 − µεk(t))�k(t, x),

�k(t = 0, x) = �init(x),
(7)

εk(t) = (1 − δ)ε̃k−1(t) − δ

α
Im〈χk−1|µ|�k〉(t). (8){

i∂tχ
k(t, x) = (H0 − µε̃k(t))χk(t, x),

χk(t = T , x) = O�k(T , x),
(9)

2
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ε̃k(t) = (1 − η)εk(t) − η

α
Im〈χk|µ|�k〉(t), (10)

where δ and η are two real parameters in [0, 2] with (δ, η) �= (0, 0).
The most important property of this algorithm is given in the following theorem:

Theorem 1 ([4]). Suppose O is a self-adjoint positive semi-definite operator. Then, for any
δ, η ∈ [0, 2] the algorithm given in equations (7)–(10) converges monotonically in the sense
that J (εk+1) � J (εk).

In what follows, we show how to adapt this algorithm to the toolkit method. The
communication is organized as follows: in section 2, we introduce the discrete setting of
our optimization problem. The toolkit methods together with the monotonic schemes are
described in section 3. The definition of our algorithm is given in section 4. Some numerical
results are presented in section 5 and a conclusion is given in section 6.

2. Discrete setting

In this section, we present the discretization involved in our method.

2.1. Time discretization

Let N be the number of time steps, �t = T/N and introduce εj , ε̃j , �j , χj that stand
respectively for the approximations of ε(j�t), ε̃(j�t),�(j�t) and χ(j�t) respectively. We
denote in the following ε = (εj )0�j�N, ε̃ = (ε̃j )0�j�N,� = (�j )0�j�N, χ = (χj )0�j�N .

For a given field ε(t), a first numerical approximation of the final state �(T ) is given by

�(N�t) � e−i�t(H0−µεN−1)e−i�t(H0−µεN−2) · · · e−i�t(H0−µε1)e−i�t(H0−µε0)�init.

Note that in this approximation, we consider that the change in the Hamiltonian H(t) can be
neglected over a time step �t . In practice the parameter �t is chosen adequately to reproduce
the oscillations of H(t).

2.2. Toolkit discretization

In order to accelerate the computation, the toolkit method [1–3] proposes to approximate at
each time step the field εj by a specific member εrj

of a predefined set {εr}r=1,...,m, with m > 1.
Given arbitrary bounds εmin, εmax, we define

εr = εmin + (r − 1)�ε,

where �ε = 1
m−1 (εmax − εmin) is the toolkit step.

To compute the evolution of the wavefunction over the (j + 1)th time step, the propagator
e−i�t(H0−µεj ) is then replaced by the corresponding approximation �rj

= e−i�t(H0−µεrj
), where

rj = argminr=1,...,m{|εj − εr |}.
Note that the precomputation of all exponentials {�r}r=1,...,m is readily compensated since

the total number of time steps �t is usually (up to three order of magnitude) larger than the
number of grid values for ε(t).

2.3. Spectral decomposition

Let us now suppose that the operators H0 and µ are discretized in a finite dimensional basis
of size M. In this case, the precomputation of the exponentials �r requires an offline effort

3
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(i.e. in preparation to the operational phase) that scales as mM3 and a storage of mM2. The
online phases on a time interval [0, T = N�t] require an effort that scales as NM2.

Let us briefly discuss the computation of the propagated state over [0, T ]. For each value
εj , we denote by vl

j and λl
j , the eigenmodes of H0 − µεj as

(H0 − µεj )v
l
j = λl

j v
l
j , l = 1, . . . ,M, j = 1, . . . , m,

where m is the toolkit size. In this framework, the evolution of a state φ ∈ C
M over

[tj , tj+1 = tj + �t] with ε(t) ≈ εj is computed by

e−i�tH(tj )φ =
M∑
l=1

〈vl
j , φ〉 e−i�tλl

j vl
j , l = 1, . . . ,M, j = 1, . . . , m.

3. Toolkit method and monotonic schemes

This section presents the structure of our optimization procedure.

3.1. Forward and backward propagations

Let us describe the kth iteration of our algorithm. Suppose that the piecewise constant field
εk(t) with amplitude values drawn from the electric-field toolkit {εr}r=1,...,m is known. This
field is integrated forward and backward in time, see equations (4)–(5), using the corresponding
toolkit of propagators {�rj

}j=0,...,N−1 and their adjoints {(�rj
)∗}j=0,...,N−1. In this way, the

state �k(t) and adjoint state χk(t) are computed at each time step over the time period
0 � t � T . The evaluation of the quality of the field is given by the functional J . As
described in the next sections, the electric field at each iteration is updated in such a way so
as to maximize the functional. The new field is then discretized according to the toolkit field
values, yielding the new trial field to compute �k+1(t) and χk+1(t) with the toolkit {�r}r=1,...,m.

A direct implementation of the algorithms (7)–(10) involves a time discretization which
may spoil the monotonic character, as we have shown below.

3.2. Example of a non-monotonic time-discretized scheme

We keep the notations introduced in section 2.1. A naive approach to discretize (7)–(10) is
given by the following procedure:

Given initial control amplitudes ε0, ε̃0 and their associated state �0 and adjoint state
χ0, suppose that for some k � 1, �k, χk, εk, ε̃k have already been computed. Then
�k+1, χk+1, εk+1, ε̃k+1 are computed as follows:

Step 1. Knowing �k+1
0 = �init, define �k+1

j+1 from �k+1
j by

• Compute εk+1
j by

εk+1
j = (1 − δ)ε̃k

j − δ

α
Im

〈
χk

j |µ|�k+1
j

〉
.

• Define rk+1
j = argminr=1,...,m

{∣∣εk+1
j − εr

∣∣}.
• Compute �k+1

j+1 by �k+1
j+1 = �rk+1

j
�k+1

j .

Step 2. Knowing χk+1
N = O�k+1

N , define χk+1
j from χk+1

j+1 by

4
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Figure 1. Unstable monotonic time-discretized scheme (in our simulation, (δ, η) = (1.75, 0.25),
and m = 800). At the continuous level, the procedure should result in an increase of the functional
value, while here the functional values are not improving during the iterations and even explode
after the 4th iteration. The behaviour of our algorithm is similar for other choices of parameters
(δ, η) ∈ [0, 2] × [0, 2].

• Compute ε̃k+1
j by

ε̃k+1
j = (1 − η)εk+1

j − η

α
Im

〈
χk+1

j+1 |µ|�k+1
j+1

〉
.

• Define r̃ k+1
j = argminr=1,...,m

{∣∣ε̃k+1
j − εr

∣∣}.
• Compute χk+1

j by χk+1
j = (

�r̃k+1
j

)∗
χk+1

j+1 .

Although this procedure corresponds to a direct discretization of (7)–(10), this scheme
develops numerical instabilities, as shown in figure 1, so that the best field computed with this
algorithm is the one obtained before numerical explosion, see figure 2.

For the numerical simulation, we choose a typical one-dimensional test system [7, 4]
consisting of an excitation from the ground state to a certain target Morse potential of the O–H
bond. For the numerical details concerning this test, we refer the reader to section 5.

4. Monotonic time-discretized scheme

We present an approach to discretize algorithms (7)–(10) so that they remain monotonic in the
toolkit framework. To do this, we introduce the following time-discretizated version of the
functional J (see equation (3)):

J�t (ε) = 〈�N |O|�N 〉 − α�t

N−1∑
j=0

ε2
j .
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Figure 2. Optimized electric field obtained before numerical explosion (in our simulation,
(δ, η) = (1.75, 0.25), and m = 800). The optimized electric field behaviour is similar for
other choices of parameters (δ, η) ∈ [0, 2] × [0, 2].

4.1. Preliminary

Assuming that another set of control amplitudes ε′ is given, with associated state � ′ and
adjoint state χ ′, we analyse the difference of the functionals. We have

J�t (ε
′) − J�t (ε) = 〈� ′

N − �N |O|� ′
N − �N 〉

+ 2 Re〈� ′
N − �N |O|�N 〉 + α�t

N−1∑
j=0

(
ε2
j − ε′

j

2)
,

where the notation Re(z) is used to denote the real part of the complex number z. Focusing
on 〈� ′

N − �N |O|�N 〉, we find

〈� ′
N − �N |O|�N 〉 = 〈� ′

N − �N, χN 〉

=
N−1∑
j=0

〈� ′
j+1 − �j+1, χj+1 − χj 〉 + 〈� ′

j+1 − �j+1 − � ′
j + �j, χj 〉

=
N−1∑
j=0

〈� ′
j+1 − �j+1, (e

−i�t(H0−µε̃j ) − Id)χj 〉

+
N−1∑
j=0

〈(Id − ei�t(H0−µε′
j ))� ′

j+1, χj 〉 −
N−1∑
j=0

〈(Id − ei�t(H0−µεj ))�j+1, χj 〉

6
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=
N−1∑
j=0

〈(ei�t(H0−µε̃j )e−i�t(H0−µε′
j ) − Id)� ′

j , χj 〉

+
N−1∑
j=0

〈�j+1, (e
−i�t(H0−µεj )ei�t(H0−µε̃j ) − Id)χj+1〉.

Finally we obtain the formula

J�t (ε
′) − J�t (ε) = 〈� ′

N − �N |O|� ′
N − �N 〉 +

N−1∑
j=0

φε̃
j (ε

′) + φ̃
ε

j (ε̃),

where

φε̃
j (ε

′) = 2Re〈(ei�t(H0−µε̃j )e−i�t(H0−µε′
j ) − Id)� ′

j , χj 〉 + α�t((ε̃j )
2 − (ε′

j )
2)

φ̃
ε

j (ε̃) = 2Re〈�j+1, (e
−i�t(H0−µεj )ei�t(H0−µε̃j ) − Id)χj+1〉 + α�t((εj )

2 − (ε̃j )
2).

This formula allows us to design schemes that remain monotonic after time discretization. To
ensure monotonical increase towards the optimum (i.e. J�t (ε

′) � J�t (ε)), it is sufficient to
find ε′ such that

∀j = 0, . . . , N − 1, φε̃
j (ε

′) � 0, φ̃
ε

j (ε̃) � 0.

The strategy we choose is the following: given a field ε, the values ε̃j are computed recursively
with respect to j so that φ̃

ε

j (ε̃) is positive (and maximized) at each time step. The same
procedure is then applied to the term φε̃

j (ε
′) to define ε′, the updated value of ε.

4.2. Definition of the scheme

The previous part enables us to complete the description of the algorithm initiated in
section 3.1.

4.2.1. Local optimization. We describe the computation of εk+1. Suppose that the sequence
(r̃k

j )j=0,...,N−1 and rk+1
� , with � < j are known and define τj : εk+1

j �→ φε̃
j (ε

k+1). The optimal
choice of εk+1

j corresponds to the maximum of τj within the set of toolkit values {εr}r=1,...,m.
To locate this point, we approximate τj by a second-order polynomial in a neighbourhood of
x = εr̃k

j
which can be obtained through the Taylor expansion,

τj (x + h) = a0 + a1h + a2h
2 + o(h2).

Note that εk+1
j = εr̃k

j
cancels τj , hence a0 = 0.

Then, the coefficients a1 and a2 can be computed using τj (x +�ε) and τj (x −�ε), where
�ε is the toolkit step, see section 2.2. Indeed, we have⎧⎪⎪⎨

⎪⎪⎩
a1 = τj (x + �ε) − τj (x − �ε)

2�ε

a2 = τj (x + �ε) + τj (x − �ε)

2(�ε)2
.

(11)

The maximum of this polynomial in h is achieved for

h�
j
k+1 = − a1

2a2
, (12)

which suggests to define rk+1
j as the index of the toolkit value that is the closest to εr̃k

j
+ h�

j
k+1.

In order to guarantee the monotonicity of our algorithm, we test the positivity of τj (εrk+1
j

)

7
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before the computation of �k+1
j+1 . If τj (εrk+1

j
) < 0, the index rk+1

j is redefined by rk+1
j = r̃ k

j

which leads to τj (εrk+1
j

) = 0. The field index update is summarized by the formula

rk+1
j =

{
argminr=1,...,m

{∣∣ε̃k
j + h�

j
k+1 − εr

∣∣}, if τj (εrk+1
j

) � 0

r̃ k
j , otherwise.

(13)

In the same way, r̃ k+1
j is defined by

r̃ k+1
j =

{
argminr=1,...,m

{∣∣εk+1
j + g�

j
k+1 − εr

∣∣}, if τj (εr̃k+1
j

) � 0

rk+1
j , otherwise,

(14)

where (g�
j )

k+1 is obtained in the same way as (h�
j )

k+1.

Remark 4.1. In order to improve the efficiency of the algorithm, one can approximate τj using
additional values, e.g. by computing, for a given integer n, τj

(
ε̃k
j − �ε

)
, τj

(
ε̃k
j + �ε

)
, τj

(
ε̃k
j −

2�ε
)
, τj

(
ε̃k
j + 2�ε

)
, . . . , τj

(
ε̃k
j − n�ε

)
, τj

(
ε̃k
j + n�ε

)
and then find the maximum of the

polynomial that best fits this sample.

Remark 4.2. Note that the computations of the coefficients a1 and a2 take advantage of the
toolkit approach since it only uses matrices {�r}r=1,...,m; as such the additional cost is of the
same order of magnitude as the cost of advancing one time step.

4.2.2. Algorithm. We are now in a position to give the definition of our algorithm. Given
initial control amplitudes ε0, ε̃0 and their associated state �0 and adjoint state χ0, suppose
that for some k � 1, �k, χk, εk, ε̃k have already been computed. The iterated quantities
�k+1, χk+1, εk+1, ε̃k+1 are defined as follows:{

�k+1
j+1 = �rk+1

j
�k+1

j

�k+1
0 = �init,

(15)

where rk+1
j is defined by (13),{

χk+1
j = (�r̃k+1

j
)∗χk+1

j+1

χk+1
N = O�k+1

N ,
(16)

where r̃ k+1
j is defined by (14).

5. Numerical results

In order to confirm the theoretical result analysed in section 4, we choose a typical one-
dimensional test system [4, 7] consisting of the O–H-bond that vibrates in a Morse-type
potential V (x) = D0((e−β(x−x0) − 1)2 − 1), with D0 = 0.1994, β = 1.189 and x0 = 1.821.
The dipole moment function is µ(x) = µ0x e−x/x∗

with µ0 = 3.088 4041, x∗ = 0.6. The
goal is to localize the wave packet at a given location x ′; this is expressed via the observable
O(x) = γ0√

π
e−γ 2

0 (x−x ′)2
through the requirement that 〈�(T )|O|�(T )〉 is maximized (γ0 and

x ′ are chosen to be 25.0 and 2.5 respectively). The final time is T = 131 000 and the time
step is dT = 10. The input field is taken as ε0(t) = 0 and the penalty factor is α = 1.

Figure 3 shows the evolution of the values of the functional versus the number of iteration
steps for different parameter values m of the toolkit’s size. The numerical calculation confirms

8
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Figure 3. Evolution of the functional J for different parameter values m. It is a characteristic of the
monotonic schemes to obtain good quality after few iteration steps: the first steps give the major
contributions to obtain almost 80% of its maximum value of the optimized objective functional.
All curves have the same asymptotic behavior. Working with m = 800 is an efficient compromise
between numerical accuracy and small computational time.

the theoretical result of section 4 as each additional iteration step monotonically improves the
previous iteration step by adding a positive term.

We set the initial field to zero, which is almost a critical point of the functional; as such,
when zero is a toolkit value (i.e. for odd m) the field may not change; in contrast, for even m
the field will need an iteration to take admissible toolkit values (and as such the first iteration
may not be monotonic) but this small adjustment will force it to leave the critical point. Thus
the overall convergence will be better for even m than for odd m.

6. Conclusion

In this communication, we propose a numerical improvement of the ‘toolkit’ method which
preserves the monotonicity of the optimization algorithms used to find the best quantum
control field. The properties of the new algorithm are analysed theoretically in section 4,
and numerical test in section 5 confirms the theoretical result. The method accelerates the
computation and can be used to obtain an initial assumption when considering more precise
or higher order methods.
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